Analytics

Yummy 3D plots

Very nice interactive 3D plots with Plotly. import plotly.graph_objects as go import numpy as np import pandas as pd # Read data from a csv Z = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/api_docs/mt_bruno_elevation.csv').values # Actually not necessary to provide X and Y… X = np.linspace(0, 1000, Z.shape[0]) Y = np.linspace(0, 1000, Z.shape[1]) fig = go.Figure(data=[go.Surface(x=X, y=Y, z=Z)]) fig.update_layout(title='Mt Bruno Elevation', …

Yummy 3D plots Read More »

How to fill missing dates in Pandas

Create a pandas dataframe with a date column: import pandas as pd import datetime   TODAY = datetime.date.today() ONE_WEEK = datetime.timedelta(days=7) ONE_DAY = datetime.timedelta(days=1)   df = pd.DataFrame({’dt’: [TODAY-ONE_WEEK, TODAY-3*ONE_DAY, TODAY], ‘x’: [42, 45,127]})import pandas as pd import datetime TODAY = datetime.date.today() ONE_WEEK = datetime.timedelta(days=7) ONE_DAY = datetime.timedelta(days=1) df = pd.DataFrame({‘dt’: [TODAY-ONE_WEEK, TODAY-3*ONE_DAY, TODAY], ‘x’: …

How to fill missing dates in Pandas Read More »

How to display a Choropleth map in Jupyter Notebook

Here is the code: %matplotlib inline import geopandas as gpd import matplotlib as mpl # make rcParams available (optional) mpl.rcParams[’figure.dpi’]= 144 # increase dpi (optional)   world = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres")) world = world[world.name != ‘Antarctica’] # remove Antarctica (optional) world[’gdp_per_person’] = world.gdp_md_est / world.pop_est g = world.plot(column=’gdp_per_person’, cmap=’OrRd’, scheme=’quantiles’) g.set_facecolor(’#A8C5DD’) # make the ocean blue (optional)%matplotlib …

How to display a Choropleth map in Jupyter Notebook Read More »