skipperkongen

Trying stuff with code

Turning big hard
problems into
smaller, less hard
problems.

[W]November 14, 2010 [¥]
Algorithms

Here | have captured a thought process |

had while reading about algorithms for hard
graph problems. The thoughts are inspired
by MapReduce, distributed merge sort and

the more colorful newspapers of the world.

Summary of
thoughts

Given an instance of an problem (think
Max Clique, Traveling Salesman or another
hard graph problem)...

Thought 1:

Compute an
instance that is
“easier” but has
the same
optimal
solution. This is
done by a
‘reducer
algorithm”.

Thought 2:

Reducer
algorithms may
run in parallel.

Thought 3:

Reducer
algorithms may
be different.

Thought 4:

Reducer
algorithms can
“gossip” with
each other
during
execution.
Gossip helps an
algorithm by
yielding new
information
about the
problem being
solved.

Thought 5:

Gossip is either
a suboptimal
solution or a
reduced
problem
instance. This
information can
be used as a
lower bound, or
in other ways.

Thought 6:

“Merger
algorithms” can
combine
problem
instances from
different
reducer
algorithms into
one.

A full example of reducing and
merging: Maximum Clique Problem.

Here is an instance of the Maximum Clique
Problem, in this case a non-planar graph.
By the way, planar graphs are boring
because they can only contain cliques of
size 4 or smaller.

A graph that contains cliques
of different sizes.

Let’s see what could happen when running
two different reducers (reducer 1 and
reducer 2) on this problem instance, and
then merging the returned instances.

Reducer 1 works by randomly finding a
clique in the graph, and repeatedly deleting
nodes that have degree less than the size
of the clique. The clique found is emitted
as a gossip message (reducer 2 will use
this as a lower bound).

Here is the result of running reducer 1:

The red nodes is the clique
found by reducer 1 and
gossiped to reducer 2

Let’s look at reducer 2. While running
reducer 2 could receive a gossip message
from reducer 1, that a clique of size 4 has
been found. Reducer 2 could use this as a
lower bound. Reducer 2 targets nodes of
degree around the lower bound. It works
(slowly) be examining the targeted node to
find out if it is part of a clique. If not it is
deleted from the graph.

This could be the result of running reducer
2 (and accepting gossip from reducer 1):

After getting a gossip that a 4-

clique has been found, reducer
2 targets nodes with degree 4
and removes them if they are
not in a clique.

In this madeup example reducer 1
managed to remove more nodes than
reducer 2, but the point is that they
removed different nodes.

Running the merger (computes the
intersection) on the two reduces instances
yields this:

The result of merging the
output of reducer 1 and
reducer 2

Yay, an even smaller instance. But while
we have the reducers up and running, we
not restart reducer 1 with this instance as
input! Let’s see what we get.

Feeding the reduced instance
into reducer 1 for further
reduction eliminates even more
nodes

This look pretty good. This graph contains
only 23 nodes, which is approximately half
of the original graph, and that by
discovering a relatively small clique of size
4 (compared to the big one of size 7).

Conclusion and a small
disclaimer

Most people who deal with such problems
call this sort of thing preprocessing. | call it
a “reducer network”, mainly because it
sounds cooler, but also because | think
there might be a novel idea here. Namely
running a host of algorithms in a distributed
environment to perform the preprocessing
while emitting and accepting gossip. Of
course this is very similar to the ideas
behind Google MapReduce and similar
services, and might be exactly the same
thing. | just felt the need to document my
though process, and this post was created

This blog post is based on ideas and
thoughts | had while reading “The
Algorithm Design Manual” by Skiena (great
book). The thougts are just that, thoughts.

